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Abstract
We study an equilibrium statistical mechanical model of tree graphs which are
made up of a linear subgraph (the spine) to which leaves are attached. We
prove that the model has two phases, a generic phase where the spine becomes
infinitely long in the thermodynamic limit and all vertices have finite order
and a condensed phase where the spine is finite with probability 1 and a single
vertex of infinite order appears in the thermodynamic limit. We calculate the
spectral dimension of the graphs in both phases and prove the existence of a
Gibbs measure. We discuss generalizations of this model and the relationship
with models of nongeneric random trees.

PACS numbers: 02.50.Cw, 05.20.Gg, 05.60.Cd

1. Introduction

The study of random graphs has been an active area of research in mathematics and physics
for the past few decades and remains so. In particular, the study of random trees and
random triangulations has found many applications in theoretical physics, see e.g. [1]. Our
understanding of the equilibrium statistical mechanics of trees with local action is fairly
good but not complete. By local action we mean an action which is given by a sum over
the vertices and only depends on their order. It is now known that the so-called generic
trees can be viewed as critical Galton–Watson processes [13] which are very well understood
mathematically [3]. A corresponding picture has not been fully established for nongeneric
trees which are more difficult to analyse. Much of our knowledge about such trees comes from
numerical simulations and educated guesswork [4–6, 8, 9]. However, a consistent picture has
emerged [20]. Typically, a vertex of infinite order appears in the thermodynamic limit but full
analytic control of this phase of random trees is still missing.

In this paper, we study a simple model of random graphs which exhibits the same behaviour
as random trees with a local action, namely there is a generic phase where the free energy can
be calculated by a saddle point technique and a nongeneric phase where a vertex of infinite
order appears in the thermodynamic limit. This model was analysed extensively some years
ago in a series of papers [4–6] under the name ‘balls in boxes’ and ‘backgammon’ model.

1751-8113/09/485006+15$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/48/485006
http://stacks.iop.org/JPhysA/42/485006


J. Phys. A: Math. Theor. 42 (2009) 485006 T Jonsson and S Ö Stefánsson

Closely related models appear in the study of the equilibrium distribution for urn models and
zero-range processes, see e.g. [15, 17] and references therein.

The graphs that underlie the model studied in this paper have been called caterpillar graphs
or simply caterpillars by graph theorists [18] and we will adopt that name here. Caterpillars
are defined as graphs with the property that all vertices of order higher than 1 form a linear
subgraph, i.e. if all leaves are removed one ends up with a linear graph. Various applications
of caterpillar graphs in physics and chemistry are described in [14]. A recent model of random
trees, the alpha–gamma model [10], includes as a special case (α = 1) a model of random
caterpillar graphs.

When the caterpillar grows large, two things can happen: it either becomes very long or
some of the vertices will have a large number of leaves. A priori, these two phenomena could
coexist but we will see that this is not the case in the model we consider. Our main motivation
is to study the appearance of a vertex of infinite order in a rigorous fashion.

This paper is organized as follows. In the next section we define the model, establish our
notation and derive some simple properties. In section 3, we study the generic phase and prove
that generic caterpillars are infinitely long in the thermodynamic limit with all vertices of finite
order. We calculate the order distribution explicitly. The Hausdorff and spectral dimensions
of generic caterpillars are both shown to be equal to 1. In section 4, which is the core of this
paper, we study nongeneric caterpillars and begin by establishing an asymptotic formula for
the canonical partition function. We then prove that there arises exactly one vertex of infinite
order in the thermodynamic limit. We find the probability distribution of the distance from
the root of the random caterpillar (taken to be one of the endpoints of the spine) to the infinite
order vertex as well as the probability distribution for the orders of the other vertices.

The nongeneric caterpillar graphs have infinite Hausdorff and spectral dimensions since
there is a vertex of infinite order at a finite distance from the root with probability 1. However,
we will show that the spectral dimension defined in terms of the ensemble average of the
return probability of random walker is finite and varies continuously with the parameters of
the model.

In section 5, we comment on generalizations of this model and discuss nongeneric trees
and how they are related to the caterpillar model. In an appendix, we establish the existence of
a probability measure on the set of infinite caterpillar graphs where vertices may have infinite
order.

2. The model

A finite caterpillar is a finite graph which consists of a linear graph, which we call the spine,
to which leaves (i.e. individual links) are attached. We mark the end vertices of the linear
graph by r1 and r2 and call r1 the root of the caterpillar. Both these vertices have order 1
by definition. Furthermore, we will view the caterpillars as planar graphs so we distinguish
between left leaves and right leaves, see figure 1. The assumption of planarity is not essential.
We denote the set of all caterpillars with N edges by BN. For a caterpillar τ ∈ BN , denote
the graph distance between r1 and r2 by �(τ) and call it the length of the caterpillar. For a
caterpillar of length �, we denote the vertices on the spine between r1 and r2 by s1, . . . , s�−1.

Let wn, n = 1, 2, . . . , be a sequence of nonnegative numbers which will be called weight
factors. The weight of a caterpillar τ ∈ BN is defined as

w(τ) =
∏

i∈τ\{r1,r2}
wσ(i), (1)
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r1
s1 s2 s3 s4 r2

Figure 1. An example of a finite caterpillar graph.

where σ(i) denotes the order of the vertex i and by abuse of notation we let τ also denote the
set of vertices in τ . We define the finite volume partition function by

ZN =
∑
τ∈BN

w(τ) (2)

and a probability distribution on BN by

νN(τ) = w(τ)

ZN

. (3)

The weight factors wn, or alternatively the measures νN , define what we call a caterpillar
ensemble.

Since the probability of a given caterpillar only depends on the order of its vertices, an
equivalent way of defining this ensemble is the following. If τ ∈ BN consider the finite
sequence c(τ ) = (σ (s1), σ (s2), . . . , σ (s�−1)) and assign to it the probability

ν̃N (c(τ )) = νN(τ)

�(τ)−1∏
i=1

(σ (si) − 1). (4)

The product factor in (4) accounts for the number of different caterpillars which correspond
to the same sequence c(τ ). Define the set B̃N = {c(τ )|τ ∈ BN }. It is clear that (BN, νN) is
equivalent to (B̃N , ν̃N ) in the sense that νN(τ) only depends on c(τ ). This allows us to extend
the notion of finite caterpillars to infinite ones:

B̃ = {
(bi)

k−2
i=1

∣∣k, bi ∈ {2, 3, . . .} ∪ {∞}, 1 � i � k − 2
}
, (5)

where k = 2 corresponds to the unique caterpillar of length � = 1. Note that an element in B̃

which has infinite terms and/or infinite length has no counterpart in BN for any N.
Define the finite volume partition function with fixed distance � between r1 and r2 as

ZN,� =
∑

τ∈BN ,�(τ )=�

w(τ). (6)

It is useful to work with the generating functions

Z(ζ ) =
∞∑

N=1

ZNζN (7)

and

g(z) =
∞∑

n=0

wn+1z
n (8)

with radii of convergence ζ0 and ρ, respectively, both of which we assume to be nonzero.
Define also

Ẑ�(ζ ) =
∞∑

N=1

ZN,�ζ
N . (9)
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= �− 1

i− 1

Ẑ�(ζ)
∑∞

i=1 iζ
iwi−1

1 wi+1Ẑ�−1(ζ)

�

Figure 2. An illustration of the recursion (11).

Then it is clear that

Z(ζ ) =
∞∑

�=1

Ẑ�(ζ ). (10)

We have the recursion relation

Ẑ�(ζ ) = ζg′(w1ζ )Ẑ�−1(ζ ), (11)

for any � � 1, see figure 2.
Using the above equation and Ẑ1(ζ ) = ζ gives

Ẑ�(ζ ) = ζ(ζg′(w1ζ ))�−1 (12)

and by (10),

Z(ζ ) = ζ

1 − ζg′(w1ζ )
. (13)

From (13), we see that ζ0 is the smallest solution of the equation

ζg′(w1ζ ) = 1 (14)

on the interval (0, ρ/w1) if such a solution exists. If it does not exist, then ζ0 = ρ/w1.
If ζ0 < ρ/w1 then g is analytic at w1ζ0 and we say that we have a generic ensemble. This

has been called the ‘fluid phase’ by other authors [6]. If ζ0 = ρ/w1 we have a nongeneric
ensemble. Notice that if ρ = ∞ then the ensemble is always generic. For nongeneric
ensembles we therefore have finite ρ. In that case we can always choose ρ = 1 by scaling the
weights wn → wnρ

n−1. This scaling does not affect the probabilities (3).
Now consider weight factors with ρ = 1 and let w1 be a free parameter. The genericity

condition is then 1
w1

g′(1) > 1, i.e. w1 < wc where

wc ≡ g′(1) =
∞∑

n=2

(n − 1)wn (15)

is a critical value for w1. If w1 = wc, we have a nongeneric ensemble which we refer to as
critical and if w1 > wc we have a nongeneric ensemble which we refer to as subcritical. This
phase has been called the ‘condensed phase’ in the literature [6].

3. The generic phase

Let wn be weight factors with w1 �= 0 and wn �= 0 for some n > 2 which lead to a generic
ensemble.

4
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Lemma 1. Under the stated assumptions on the weight factors, the asymptotic behaviour of
ZN is given by

ZN = 1

g′(w1ζ0) + ζ0w1g′′(w1ζ0)
ζ−N

0 (1 + O(N−1)) (16)

if the integers n > 0 for which wn+1 �= 0 have no common divisors greater than 1. Otherwise,
if their greatest common divisor is d � 2, then

ZN = d

g′(w1ζ0) + ζ0w1g′′(w1ζ0)
ζ−N

0 (1 + O(N−1)), (17)

if N = 1 mod d, and ZN = 0 otherwise.

The proof of this lemma is standard, cf [16], where the corresponding result for generic
trees is established. For generic caterpillars one can show by a straightforward application of
the methods of [11] (see also the appendix) that the measures ν̃N converge as N → ∞ to a
measure ν̃ which is concentrated on locally finite caterpillars of infinite length and the orders
of the vertices on the infinite spine are independently and identically distributed by

φ(n) = ζ0(n − 1)wn(w1ζ0)
n−2, n � 2. (18)

Denote the expectation with respect to the measure ν̃ by 〈·〉ν̃ . If Vr is the number of vertices
within a distance r from the root, the Hausdorff dimension dH is defined as

〈Vr〉ν̃ ∼ rdH . (19)

We write f (x) ∼ xγ if for any ε > 0 there are constants C1 and C2 such that C1x
γ +ε �

f (x) � C2x
γ−ε . If 〈Vr〉ν̃ increases faster than any power of r then we say that dH is infinite.

We see from (18) that the expectation value (19) is

〈Vr〉ν̃ = (ζ0g
′′(w1ζ0) − 1)(r − 1) + 1. (20)

It follows that the Hausdorff dimension of generic caterpillars is 1.
Let pτ (t) be the probability that a simple random walk which leaves the root of an infinite

caterpillar τ at time 0 is back at the root at time t, i.e. after t steps. If there exists a number
ds > 0 such that

pτ (t) ∼ t−ds/2 (21)

as t → ∞, then we say that the spectral dimension of the graph is ds. If pτ (t) decays faster
than any power of t then we say that ds is infinite. For a discussion of the spectral dimension
of some random graph ensembles, see [12, 13, 19].

The spectral dimension is most conveniently analysed by generating functions. We define

Qτ(x) =
∞∑
t=0

pτ (t)(1 − x)t/2 (22)

and let Q(x) = 〈Qτ(x)〉ν̃ . We define p(1)
τ (t) to be the probability that a simple random walk

which leaves the root at time 0 is back at the root for the first time after t steps and let Pτ (x) be
the corresponding generating function defined as Qτ(x) with pτ (t) replaced by p(1)

τ (t). Then
we have the relation

Qτ(x) = 1

1 − Pτ (x)
. (23)

Let n be the smallest nonnegative integer for which Q(n)
τ (x), the nth derivative of Q(x),

diverges as x → 0. If

(−1)nQ(n)
τ (x) ∼ x−α (24)
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for some α ∈ [0, 1), then clearly

ds = 2(1 − α + n), (25)

if ds exists. We define the spectral dimension of the caterpillar ensemble by (25) provided
(−1)nQ(n)(x) ∼ x−α .

From the monotonicity lemmas in [19], we get an upper bound x−1/2 on Q(x) by throwing
away all the legs of the caterpillar. To get a lower bound on Q(x), we use a slight modification
of lemma 7 in [13] which is the following. For a given infinitely long caterpillar τ with a first
return probability generating function Pτ (x) we have, for all integers L � 1 and 0 < x � 1,

Pτ (x) � 1 − 1

L
− x

L∑
i=1

σ(si(τ )). (26)

We then get, using (23), (26) and Jensen’s inequality,

Q(x) � 1

1 − 〈Pτ (x)〉ν̃ � 1
1
L

+ 〈σ(s1)〉ν̃Lx
. (27)

In the generic phase, we see from equation (18) that 〈σ(s1)〉ν̃ is finite. Choosing L = [x−1/2],
we find

Q(x) � cx−1/2, (28)

where c is a constant. It follows from (28), the upper bound on Q(x) and (25) that the spectral
dimension of generic caterpillars is ds = 1.

4. The subcritical phase

In this section, we begin by calculating the asymptotic behaviour of the canonical partition
function in the subcritical phase. We then show that there is exactly one vertex of infinite
order in the thermodynamic limit. The mechanism leading to a unique vertex of infinite order
is similar to the one leading to a unique spine for generic trees [11, 13]. We calculate the
probability distribution for the location of the infinite order vertex as well as the probability
distribution for the orders of the other vertices. Finally, we discuss the spectral dimension of
subcritical caterpillars.

We take ρ = 1 and w1 > wc so that we are in the subcritical phase. We study a concrete
model where

wi = i−β, i � 2, (29)

and let w1 be a free parameter in the specified range. We comment on extensions in section 5.
Figure 3 shows the phase diagram of the caterpillars. A necessary condition for being in the
subcritical phase is β > 2 since otherwise wc = ∞.

Lemma 2. For the weights given in (29) and w1 > wc, we have

ZN = 1

(w1 − wc)2
N1−βwN

1 (1 + o(1)) (30)

as N → ∞.

6
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Sub−critical

2

Generic

Critical

1w

β

Figure 3. A diagram showing the different phases of the caterpillars.

Proof. We can write

ZN =
N∑

�=1

ZN,�. (31)

Define a sequence of functions fN on the positive integers by

fN(�) =
{
w−N

1 Nβ−1ZN,� � � N

0 � > N .
(32)

We claim that

lim
N→∞

fN(�) = 1

w2
c

(� − 1)

(
wc

w1

)�

≡ f (�). (33)

We accept the claim for a moment and finish the proof of the lemma.
It is clear that fN(�) is summable for every N. We also see that f (�) is summable since

w1 > wc. Note that for � � N,

fN(�) = w−�
1 Nβ−1

∑
N1+···+N�−1=N−�

�−1∏
i=1

{
(Ni + 1)wNi+2

}

� w−�
1 Nβ−1(� − 1)

∑
N1+···+N�−1=N−�

N1� N−�
�−1

N1 + 1

(N1 + 2)β

�−1∏
i=2

{
(Ni + 1)wNi+2

}

� 1

w2
c

(
wc

w1

)�
Nβ−1(N − 1)(

N−l
�−1 + 2

)β
� C(� − 1)β

(
wc

w1

)�

, (34)

where C is a positive constant. The first inequality in (34) is obtained by observing that at least
one of the indices Ni must be larger than N−�

�−1 and in the second one we used the definition
of wc. It follows that the sequence {fN }∞1 is dominated by a summable function and we can
calculate the limit

lim
N→∞

(
w−N

1 Nβ−1ZN

) = lim
N→∞

∞∑
�=1

fN(�) =
∞∑

�=1

f (�) = 1

(w1 − wc)2
. (35)

7
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This implies the desired result.
It remains to prove the claim (33). There is at least one index i in the sum defining fN(�)

such that Ni � N−�
�−1 . If there is another index j �= i such that Nj > A where A > 1 is a

constant then we get an upper bound on that contribution to fN(�) of the form

w−�
1 Nβ−1(� − 1)2

∑
N1+···+Nl−1=N−�

N1� N−�
�−1

N2>A

N1 + 1

(N1 + 2)β

�−1∏
i=2

{
(Ni + 1)wNi+2

}

� C(�)
Nβ

(N + � − 2)β

∑
N3,...,N�−1�0

�−1∏
i=3

{(Ni + 1)wNi+2}
∑

N2>A

(N2 + 1)wN2+2

� D(�)w�−3
c

∑
N2>A

(N2 + a)wN2+2, (36)

where C(�) and D(�) are numbers which only depend on �. The last expression goes to zero
as A → ∞ since g′(1) is finite. The remaining contribution to fN(�) is

w−�
1 Nβ−1(� − 1)

∑
N1+···+N�−1=N−�

N1� N−�
�−1

Nj �A, j �=1

�−1∏
i=1

{
(Ni + 1)wNi+2

}

−→
N→∞

w−�
1 (� − 1)

(
A∑

n=0

(n + 1)wn+2

)�−2

−→
A→∞

w−2
c (� − 1)

(
wc

w1

)�

.

This completes the proof. �

From the above lemma we obtain the following result.

Theorem 1. For the weight factors given in (29) with w1 > wc, the probability that the
distance between r1 and r2 is � as the caterpillar size N goes to infinity is given by

ψ(�) ≡ lim
N→∞

ZN,�

ZN

= (� − 1)

(
1 − w1

wc

)2 (wc

w1

)�

. (37)

For a given �, exactly one of the vertices on the spine has an infinite order, and the orders of
the other vertices are identically and independently distributed by

φ(k) = 1

wc

(k − 1)k−β, k � 2. (38)

Proof. Combining lemma 2 with (33), we obtain (37). If the length of an infinite caterpillar
is � < ∞, it is clear that there is one or more vertices of infinite order. The inequality (36)
shows that there can be at most one vertex of infinite order in the limit N → ∞. Finally, the
distribution of the orders of the vertices which have a finite order in the thermodynamic limit
is obtained by an argument similar to the one leading to equation (18), cf equation (A.7). �

In the appendix, we prove the existence of a measure ν̃ on the set of infinite caterpillars
which describes the subcritical phase and is obtained as the limit of the finite volume measures.
The above theorem then implies that the Hausdorff dimension dH of a random caterpillar in

8
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the subcritical phase is almost surely (a.s.) infinite since with probability 1 there is a ball of
finite radius which contains infinitely many vertices. Similarly, the spectral dimension is a.s.
infinite because a random walk which hits the infinite order vertex returns to the root with
probability 0. From the analysis below, one can easily check that the return probability on a
randomly chosen subcritical caterpillar τ , pτ (t) decays faster than any power of t.

In the remainder of this section, we show how the definition of the spectral dimension in
terms of the ensemble average with respect to ν̃, see (25), leads to a spectral dimension

ds = 2(β − 1) (39)

in the subcritical phase. We will refer to the unique vertex of infinite order as the ‘trap’. If the
walk hits the trap, it returns to the root with probability 0. Therefore, the part of the caterpillar
beyond the trap is irrelevant for the random walk. When finding the spectral dimension, it is
therefore natural to consider the probability that the trap is at a distance � from the root instead
of considering the probability of the total length of the caterpillar given in (37).

For a caterpillar of a given length, all the vertices between r1 and r2 are equally likely to
be of infinite order so the probability that the trap is at a distance � from root is given by

p(�) =
∞∑

k=�+1

ψ(k)

k − 1
=

(
1 − wc

w1

) (
wc

w1

)�−1

. (40)

From now on, we will disregard the part of the caterpillar beyond the trap. Let B�,k be the set
of caterpillars with distance � between root and trap and which have one vertex of order k and
all other vertices of order no greater than k, with the exception of the trap of course. Let a(k)

be the probability that a given vertex on the spine between the root and the trap has order no
greater than k. Then

a(k) =
k∑

q=2

φ(q). (41)

The probability that at least one of these vertices has order k and all the others have order no
greater than k is then

c(k, �) = a(k)�−1 − a(k − 1)�−1. (42)

The average return generating function for the subcritical caterpillars is then

Q(x) =
∞∑

�=1

p(�)

∞∑
k=2

c(k, �)
∑

τ∈B�,k

ν̃({τ |τ ∈ B�,k})Qτ (x). (43)

For a given distance � between root and trap we denote by M� the linear subgraph which
starts at the root and ends at the trap, see figure 4.

The first return generating function for M� is given by

PM�
(x) = 1 − √

x
(1 +

√
x)� + (1 − √

x)�

(1 +
√

x)� − (1 − √
x)�

, (44)

see e.g. [12]. Now attach k links to each vertex of the graph M� except the root and the trap
and denote the resulting graph by M�,k , see figure 5. Using the methods of [19], we find that
the first return generating function for M�,k is

PM�,k
(x) =

(
1 +

k

2
x

)
PM�

(xk(x)), (45)

where

xk(x) =
k2

4 x2 + (1 + k)x(
1 + k

2x
)2 . (46)

9
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*
�

Figure 4. The graph M�. The root is denoted by a circled vertex and the trap by an asterisk.

*
�

k k k

Figure 5. The graph M�,k .

To find an upper bound on the spectral dimension of subcritical caterpillars, we establish
a lower bound on the nth derivative of the average return generating function. Let n be the
smallest positive integer such that Q(n)(x) diverges as x → 0. We see in the following
calculations that we have to choose n such that n + 1 < β � n + 2. By (23), we find that
(−1)nQ(n)

τ � (−1)nP (n)
τ for any τ . Thus, by differentiating (43) n times and throwing away

every term in the sum over � except � = 2, we get the lower bound

(−1)nQ(n)(x) � (−1)n
(

1 − wc

w1

)
wc

w1

∞∑
k=2

φ(k)P
(n)
M2,k−2

(x). (47)

We easily find that

PM2,k−2(x) = 1 − x

2 + (k − 2)x
(48)

and show by induction that

P
(n)
M2,k−2

(x) = (−1)nn!
(k − 2)n−1k

(2 + (k − 2)x)n+1
. (49)

Then, by (38) and (49),

(−1)n
∞∑

k=2

φ(k)P
(n)
M2,k−2

(x) = n!

wc

∞∑
k=2

(k − 2)n−1k1−β(k − 1)

(2 + (k − 2)x)n+1

� Cxβ−n−2
∫ ∞

x

yn+1−β

(2 + y)n+1
dy, (50)

where C > 0 is a constant. If β < n + 2, the last integral is convergent when x → 0 but if
β = n + 2 it diverges logarithmically. In both cases, we get an upper bound for the spectral
dimension ds � 2(β − 1).

To find a lower bound on the spectral dimension of subcritical caterpillars, we establish
an upper bound on the nth derivative of the average return generating function. First note that
1 > a(k) = a(k − 1) + φ(k) and therefore

c(k, �) = (a(k) − a(k − 1))

× (a(k)�−2 + a(k)�−3a(k − 1) + · · · + a(k)a(k − 1)�−3 + a(k − 1)�−2)

� φ(k)(� − 1). (51)

Now consider a caterpillar τ ∈ B�,k and the graph M�. Denote the vertices on the spine of
M� between the root and the trap by s1, s2, . . . , s�−1. One can obtain the graph τ from M� by

10
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attaching mτ(si) links to si, i = 1, . . . , � − 1, where 0 � mτ(si) � k − 2. Using the methods
of [19], we can write

Qτ(x) =
∑

ω:r1→r1
on M�

Kτ (x, ω)WM�
(ω)(1 − x)|ω|/2, (52)

where the sum is over all random walks ω on M� which begin and end at the root

Kτ(x, ω) =
|ω|−1∏
t=1

ωt∈{s1,...,s�−1}

(
1 +

mτ(ωt )

2
x

)−1

, (53)

WM�
(ω) =

|ω|−1∏
t=0

(σ (ωt ))
−1, (54)

where ωt is the vertex at which ω is located at step t and |ω| denotes the length of ω. The ith
derivative of the function Kτ(x, ω) can be estimated as

(−1)i
di

dxi
K(x, ω) � H(|ω|) (k − 2)i

(2 + (k − 2)x)i
, (55)

where H is a polynomial with positive coefficients. From relation (23) and the explicit
formula (44), one can easily see that (−1)iQ

(i)
M�

(0) is a positive polynomial in � of degree
2i + 1. Therefore, differentiating (52) n times and using the estimate (55), we get the upper
bound

(−1)nQ(n)
τ (x) �

n∑
i=0

Si(�)
(k − 2)i

(2 + (k − 2)x)i
, (56)

where the Si are positive polynomials in �. Differentiating (43) n times w.r.t. x and using the
estimates (51) and (56) we finally obtain

(−1)nQ(n)(x) �
n∑

i=0

∞∑
�=1

p(�)Si(�)(� − 1)

∞∑
k=2

φ(k)
(k − 2)i

(2 + (k − 2)x)i
. (57)

The sum over � is convergent since Si is a polynomial in � and p(�) decays exponentially. The
sum over k is estimated from above by an integral as in (50) which yields a lower bound on
the spectral dimension ds � 2(β − 1). This proves (39).

5. Discussion

In this paper, we have given a description of the phases of the random caterpillar model.
However, it is not complete. First of all, in the subcritical nongeneric phase, when w1 > wc,
we limit ourselves to the particular choice of weights in (29). This strict power law can easily
be relaxed to an asymptotic power law. It is however not clear how to generalize this to
arbitrary weights satisfying w1 > wc.

Secondly, we have no rigorous results on what happens on the critical line of the phase
diagram in figure 3 when w1 = wc. This problem is discussed in similar models in [6, 8]
where it is argued that when g′′(1) < ∞ the phase is characterized as the generic phase and
when g′′(1) = ∞, the critical exponent of ZN changes continuously with β.

The order of the phase transition from the condensed phase to the fluid phase also depends
on whether g′′(1) is finite or infinite. Define the free energy as

F(w1) = lim
N→∞

log ZN(w1)

N
. (58)

11
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Using (14), (16) and (30), one finds that

F ′(w1) =

⎧⎪⎨
⎪⎩

(
1

ζ 2
0 g′′(w1ζ0(w1))

+ w1

)−1

if w1 < wc

w−1
1 if w1 > wc

(59)

and thus

lim
w1→w−

c

F ′(w1) = 1
w2

c

g′′(1)
+ wc

. (60)

This shows that when g′′(1) < ∞ the phase transition is first order but when g′′(1) = ∞ it is
continuous in agreement with [6, 8].

The caterpillar model can be generalized to more complicated tree models by replacing the
leaves on the spine by trees with vertices of order bounded by K, the caterpillars corresponding
to K = 1. With similar analysis as for the caterpillars, one obtains two phases: a fluid phase
(generic) and a condensed phase (nongeneric), separated by a critical value of w1 given by

wc(K) = g′(1) −
K∑

n=2

wn. (61)

In the fluid phase, the finite volume probability measures converge to a measure concentrated
on trees with an infinite spine with critical Galton–Watson outgrowths analogous to the generic
trees in [13]. In the crumpled phase, the measures converge to trees with spine of a finite
length � distributed by

ψ(�,K) = (� − 1)

(
1 − w1

wc(K)

)2 (
wc(K)

w1

)�

. (62)

Exactly one of the vertices on the spine has infinite degree and the order of other vertices is
independently distributed by

φ(k,K) = 1

wc(K)
(k − 1)wk, k � 2. (63)

The outgrowths from the spine are independent subcritical Galton–Watson trees with offspring
probabilities

pn(K) = wn+1∑K
n=1 wn

, 0 � n � K − 1. (64)

As N → ∞, one finds that the size of the large vertex is approximately (1 − m(K))N,

where m(K) < 1 is the mean offspring probability of the Galton–Watson process. This is
in agreement with analogous results in [6, 8, 20]. What makes the calculations easy in the
condensed phase in the above models is the fact that the large vertex which emerges as N → ∞
has to stay on the spine due to the restriction on the order of the vertices in the outgrowths.
When the cutoff on the vertex orders is removed (K = ∞), one obtains nongeneric trees. In
this case, it is more difficult to locate the large vertex and one has to use other methods in the
calculations. However, we expect the above characterization of the condensed phase to hold
with minor adjustments as is argued in [20]. This will be addressed in a forthcoming paper on
nongeneric trees.
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Appendix A. The Gibbs measure in the condensed phase

In this appendix, we consider the set B̃ of all caterpillars defined in (5). We equip this set with
a metric and adopt the methods of [11] (see also [2, 7]) to prove the existence of a probability
measure on this set which describes the subcritical phase.

We define a metric d on B̃ by

d(b, c) =

⎧⎪⎨
⎪⎩

max

{
1

1 + min{bi, ci}
∣∣∣∣bi �= ci

}
if �(b) = �(c),

1 otherwise
(A.1)

where b = (b1, b2, . . .) and c = (c1, c2, . . .). We define the maximum of the empty set to be 0.
If �(b) = �(c) = ∞, note that the maximum of

{
1

1+min{bi ,ci }
∣∣bi �= ci

}
is attained since the only

possible accumulation point of this set is 0. If bi = ci = ∞ for some i then 1
1+min{bi ,ci } = 0. It

is an elementary calculation to verify that this definition fulfils the axioms for a metric.
Denote the open ball centred at b and with radius s by Bs(b). It is easy to verify that these

balls are both open and closed and that if c ∈ Bs(b) then Bs(c) = Bs(b). Denote the set of
caterpillars of fixed length � by B̃(�). For any � ∈ N, the set B̃(�) is compact. Define

B̃ ′ =
∞⋃

N=1

B̃N . (A.2)

The set B̃ ′ is a countable dense subset of B̃.
From now on we consider the weight factors (29) with w1 > wc. The probability measures

ν̃N on B̃N will be shown to converge to a measure ν̃ on B̃.

Theorem A1. For the weight factors (29) with w1 > wc, the measures ν̃N viewed as probability
measures on B̃ converge weakly to a measure ν̃ as N → ∞ and ν̃ is concentrated on the set of
caterpillars of finite length with exactly one vertex of infinite order. The length of the spine is
distributed by (37). All the vertices between r1 and r2 are equally likely to be of infinite order
and the orders of the others are independently distributed by (38).

Proof. Applying the methods of [11], we need to show the following.

(i) The sequence
(
ν̃N

(
B 1

k
(b)

))∞
N=1 converges for all k ∈ N and all b ∈ B̃ ′.

(ii) For every ε > 0, there exists a compact subset C ⊆ B̃ such that

ν̃N (B̃ \ C) < ε, for all N ∈ N. (A.3)

To prove property (i), take a finite caterpillar b = (b1, . . . , b�(b)−1) ∈ B̃ ′. In order to
streamline the notation, we write �(b) = �. Denote the set of indices i for which bi < k by I

and the set of indices i for which bi � k by I . Then,

B 1
k
(b) = {c ∈ B̃(�)|ci = bi if i ∈ I , ci � k if i ∈ I }. (A.4)

Denote the number of elements in I by R. Now order the indices in I in increasing order and
for a given caterpillar in B 1

k
(b) let Ni, 1 � i � R be the term in the caterpillar corresponding

to the ith index in I . We can then write

ν̃N

(
B 1

k
(b)

) = Z−1
N wN−�

1 W0

∑
N1+···+NR=N+�−2−b0

Nm�k,∀m

R∏
i=1

[(
Ni − 1)wNi

)]
, (A.5)
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where

b0 =
∑
i∈I

bi and W0 =
∏
i∈I

[
(bi − 1)wbi

]
.

First note that if I is empty then ν̃N

(
B 1

k
(b)

) −→ 0 when N −→ ∞. If it is not empty, there

exists an index i ∈ I in the above sum such that Ni � N+�−2−b0
R

. If there is another index
j �= i such that Nj > C where C � k is a constant then we get an upper bound

K
∑

N2>C

(N2 − 1) wN2 (A.6)

on that contribution to the above sum using (30) and the methods in the proof of lemma 2
where K is a positive number which only depends on b and k. The last expression goes to zero
as C −→ ∞ since g′(1) is finite. Estimating the remaining contribution to (A.5), we get

(w1 − wc)
2w−�

1 Nβ−1W0

R∑
j=1

∑
N1+···+NR=N+�−2−b0

k�Nm�C, m�=j

∏
i∈I

[(
Ni − 1)wNi

)]
(1 + o(1))

−→
N→∞

(w1 − wc)
2w−�

1 W0R

(
C∑

n=k

(n − 1)wn

)R−1

−→
C→∞

(w1 − wc)
2w−�

1 W0R

( ∞∑
n=k

(n − 1)wn

)R−1

(A.7)

proving the convergence. The calculations show that the measure is concentrated on the set
of caterpillars with exactly one infinite term.

In order to prove property (ii), we take our compact set to be

CL =
L⋃

�=1

B̃(�) (A.8)

and we need to show that

ν̃N ({b ∈ B̃ | �(b) > L}) −→ 0 as L −→ ∞ (A.9)

uniformly in N. We estimate as in the proof of lemma 2

ν̃N ({b ∈ B̃ | �(b) = �}) = ZN,�

ZN

� C

(
wc

w1

)�

(� − 1)β,

where C is a constant. Since w1 > wc this completes the proof of the convergence. The
distribution of the length of the spine and order of vertices follows from (A.7). �
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